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Available at: http://www.pmf.ni.ac.rs/filomat

Soft Intersection Semigroups, Ideals and Bi-Ideals;
a New Application on Semigroup Theory I

Aslıhan Sezgin Sezera, Naim Çağmanb, Akın Osman Atagünc, Muhammed Irfan Alid, Ergül Türkmene

aDepartment of Mathematics, Amasya University, 05100 Amasya, Turkey
bDepartment of Mathematics, Gaziosmanpaşa University, 60250 Tokat, Turkey
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Abstract. In this paper, we define soft intersection semigroups, soft intersection left (right, two-sided)
ideals and bi-ideals of semigroups, give their properties and interrelations and we characterize regular,
intra-regular, completely regular, weakly regular and quasi-regular semigroups in terms of these ideals.

1. Introduction

Since its inception by Molodtsov [28] in 1999, soft set theory has been regarded as a new mathematical
tool for dealing with uncertainties and it has seen a wide-ranging applications in the mean of algebraic
structures such as groups [6, 31], semirings [17], rings [1], BCK/BCI-algebras [21–23], BL-algebras [36],
near-rings [33] and soft substructures and union soft substructures [7, 34].

Many related concepts with soft sets, especially soft set operations, have also undergone tremendous
studies. Maji et al. [27] presented some definitions on soft sets and based on the analysis of several
operations on soft sets Ali et al. [3] introduced several operations of soft sets and Sezgin and Atagün [35]
and Ali et al. [2] studied on soft set operations as well.

The theory of soft set has also gone through remarkably rapid strides with a wide-ranging applications
especially in soft decision making as in the following studies: [10, 11, 26] and some other fields as [4, 14–
16, 18, 32].Soft set theory emphasizes a balanced coverage of both theory and practice. Nowadays, it has
promoted a breadth of the discipline of Informations Sciences with intelligent systems, approximate rea-
soning, expert and decision support systems, self-adaptation and self-organizational systems, information
and knowledge, modeling and computing with words.

In [5], the concept of soft ideals, soft quasi-ideals and soft bi-ideals over a given semigroup S are defined
and some interesting properties of these ideals are obtained. In this paper, we make a new approach to the
classical semigroup theory via soft sets, with the concept of soft intersection semigroup and soft intersection
ideals of a semigroup. In the paper [5], the basic definitions are based on soft sets over a semigroup. That
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is to say, the parameter set of the soft set may be any set, whereas the universe set is semigroup. In this
paper, the parameter set of the soft set is semigroup, whereas the universe set is any set. This provides us to
operate on sets easily with respect to inclusion relation and intersection of sets and also since the parameter
set of the soft set is a semigroup, we can more focus on the elements of the semigroup. This make the new
concept more functional in the mean of improving the semigroup theory with respect to soft set. The paper
reads as follows: In Section 2, we remind some basic definitions about soft sets and semigroups. In Section
3, we define soft intersection product and soft characteristic function and obtain their basic properties. In
Section 4, soft intersection semigroup, Section 5, soft intersection left (right, two-sided) ideals, Section 6, soft
intersection bi-ideals and soft semiprime ideals are defined and study with respect to soft set operations and
soft intersection product. In the following five sections, regular, intra-regular, completely regular, weakly
regular and quasi-regular semigroups are characterized by the properties of these ideals, respectively.

2. Preliminaries

In this section, we recall some basic notions relevant to semigroups and soft sets. A semigroup S is a
nonempty set with an associative binary operation. Note that throughout this paper, S denotes a semigroup.

A nonempty subset A of S is called a subsemigroup of S if AA ⊆ A and is called a right ideal of S if AS ⊆ A
and is called a left ideal of S if SA ⊆ A. By two-sided ideal (or simply ideal), we mean a subset of S, which is both
a left and right ideal of S. A subsemigroup X of S is called a bi-ideal of S if XSX ⊆ X.A subset P of a semigroup
S is called semiprime if ∀a ∈ S, a2

∈ P implies that a ∈ P. We denote by L[a](R[a], J[a],B[a]), the principal
left ideal (right ideal, two-sided ideal, bi-ideal) of a semigroup S generated by a ∈ S, that is, L[a] = {a} ∪ Sa,
R[a] = {a} ∪ aS, J[a] = {a} ∪ Sa ∪ aS ∪ SaS, B[a] = {a} ∪ {a2

} ∪ aSa. A semilattice is a structure S = (S, .), where
“.” is an infix binary operation, called the semilattice operation, such that “.” is associative, commutative and
idempotent. For all undefined concepts and notions about semigroups, we refer to [8, 19, 30]. Note that,
throughout this paper the product of ordered pairs will be considered componentwise.

Definition 2.1. ([10, 28]) A soft set fA over U is a set defined by

fA : E→ P(U) such that fA(x) = ∅ if x < A.

Here fA is also called an approximate function. A soft set over U can be represented by the set of ordered pairs

fA = {(x, fA(x)) : x ∈ E, fA(x) ∈ P(U)}.

It is clear to see that a soft set is a parametrized family of subsets of the set U. Note that the set of all soft
sets over U will be denoted by S(U).

Definition 2.2. [10] Let fA, fB ∈ S(U). Then, fA is called a soft subset of fB and denoted by fA⊆̃ fB, if fA(x) ⊆ fB(x)
for all x ∈ E.

Definition 2.3. [10] Let fA, fB ∈ S(U). Then, union of fA and fB, denoted by fA∪̃ fB, is defined as fA∪̃ fB = fA∪̃B,
where fA∪̃B(x) = fA(x) ∪ fB(x) for all x ∈ E.

Definition 2.4. [10] Let fA, fB ∈ S(U). Then, intersection of fA and fB, denoted by fA∩̃ fB, is defined as fA∩̃ fB = fA∩̃B,
where fA∩̃B(x) = fA(x) ∩ fB(x) for all x ∈ E.

Definition 2.5. [10] Let fA, fB ∈ S(U). Then,∧-product of fA and fB, denoted by fA∧ fB, is defined as fA∧ fB = fA∧B,
where fA∧B(x, y) = fA(x) ∩ fB(y) for all (x, y) ∈ E × E.

Definition 2.6. [12] Let fA and fB be soft sets over the common universe U and Ψ be a function from A to B. Then,
soft image of fA under Ψ, denoted by Ψ( fA), is a soft set over U by

(Ψ( fA))(b) =

{ ⋃
{ fA(a) | a ∈ A and Ψ(a) = b}, if Ψ−1(b) , ∅,
∅, otherwise

for all b ∈ B. And soft pre-image (or soft inverse image) of fB under Ψ, denoted by Ψ−1( fB), is a soft set over U by
(Ψ−1( fB))(a) = fB(Ψ(a)) for all a ∈ A.
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Definition 2.7. [13] Let fA be a soft set over U and α ⊆ U. Then, upper α-inclusion of fA, denoted byU( fA;α), is
defined as

U( fA : α) = {x ∈ A | fA(x) ⊇ α}.

3. Soft Intersection Product and Soft Characteristic Function

In this section, we define soft intersection product and soft characteristic function and study their
properties.

Definition 3.1. Let fS and 1S be soft sets over the common universe U. Then, soft intersection product fS ◦ 1S is
defined by

( fS ◦ 1S)(x) =

{ ⋃
x=yz{ fS(y) ∩ 1S(z)}, if ∃y, z ∈ S such that x = yz,
∅, otherwise

for all x ∈ S.

Note that soft intersection product is abbreviated by soft int-product in what follows.

Example 3.2. Consider the semigroup S = {a, b, c, d} defined by the following table:

. a b c d
a a a a a
b a a a a
c a a b a
d a a b b

Let U = D3 = {< x, y >: x3 = y2 = e, xy = yx2
} = {e, x, x2, y, yx, yx2

} be the universal set. Let fS and 1S
be soft sets over U such that fS(a) = {e, x, y, yx}, fS(b) = {e, x, y2

}, fS(c) = {e, y, yx2
}, fS(d) = {e, x, x2, y} and

1S(a) = {e, y, y2
}, 1S(b) = {e, x, yx}, 1S(c) = {e, yx, yx2

}, 1S(d) = {e, y, yx}. Since b = cc, b = dc and b = dd, then

( fS ◦ 1S)(b) = { fS(c) ∩ 1S(c)} ∪ { fS(d) ∩ 1S(c)} ∪ { fS(d) ∩ 1S(d)} = {e, y, yx, yx2
}

Similarly, ( fS ◦ 1S)(a) = {e, x, y, yx}, ( fS ◦ 1S)(c) = ( fS ◦ 1S)(d) = ∅.

Theorem 3.3. Let fS, 1S, hS ∈ S(U). Then,

i) ( fS ◦ 1S) ◦ hS = fS ◦ (1S ◦ hS).

ii) fS ◦ 1S , 1S ◦ fS, generally.

iii) fS ◦ (1S∪̃hS) = ( fS ◦ 1S)∪̃( fS ◦ hS) and ( fS∪̃1S) ◦ hS = ( fS ◦ hS)∪̃(1S ◦ hS).

iv) fS ◦ (1S∩̃hS) = ( fS ◦ 1S)∩̃( fS ◦ hS) and ( fS∩̃1S) ◦ hS = ( fS ◦ hS)∩̃(1S ◦ hS).

v) If fS⊆̃1S, then fS ◦ hS⊆̃1S ◦ hS and hS ◦ fS⊆̃hS ◦ 1S.

vi) If tS, lS ∈ S(U) such that tS⊆̃ fS and lS⊆̃1S, then tS ◦ lS⊆̃ fS ◦ 1S.

Proof. i) and ii) follows from Definition 3.1 and Example 3.2.
iii) Let a ∈ S. If a is not expressible as a = xy, then ( fS ◦ (1S∪̃hS))(a) = ∅. Similarly,

(( fS ◦ 1S)∪̃( fS ◦ hS))(a) = ( fS ◦ 1S)(a) ∪ ( fS ◦ hS)(a) = ∅ ∪ ∅ = ∅
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Now, let there exist x, y ∈ S such that a = xy. Then,

( fS ◦ (1S∪̃hS))(a) =
⋃
a=xy

( fS(x) ∩ (1S∪̃hS)(y))

=
⋃
a=xy

( fS(x) ∩ (1S(y) ∪ hS(y))

=
⋃
a=xy

[( fS(x) ∩ 1S(y)) ∪ ( fS(x) ∩ hS(y))]

= [
⋃
a=xy

( fS(x) ∩ 1S(y))] ∪ [
⋃
a=xy

( fS(x) ∩ hS(y))]

= ( fS ◦ 1S)(a) ∪ ( fS ◦ hS)(a)

= [( fS ◦ 1S)∪̃( fS ◦ hS)](a)

Thus, ( fS∪̃1S) ◦ hS = ( fS ◦ hS)∪̃(1S ◦ hS) and (iv) can be proved similarly.

v) Let x ∈ S. If x is not expressible as x = yz, then ( fS ◦ hS)(x) = (1S ◦ hS)(x) = ∅. Otherwise,

( fS ◦ hS)(x) =
⋃
x=yz

( fS(y) ∩ hS(z))

⊆

⋃
x=yz

(1S(y) ∩ hS(z)) (since fS(y) ⊆ 1S(y))

= (1S ◦ hS)(x)

Similarly, one can show that hS ◦ fS⊆̃hS ◦ 1S.

(vi) can be proved similar to (v).

Definition 3.4. Let X be a subset of S. We denote by SX the soft characteristic function of X and define as

SX(x) =

{
U, if x ∈ X,
∅, if x < X

It is obvious that the soft characteristic function is a soft set over U, that is,

SX : S→ P(U).

Theorem 3.5. Let X and Y be nonempty subsets of a semigroup S. Then, the following properties hold:

i) If X ⊆ Y, then SX⊆̃SY.

ii) SX∩̃SY = SX∩Y, SX∪̃SY = SX∪Y.

iii) SX ◦ SY = SXY.

Proof. i) is straightforward by Definition 3.4.

ii) Let s be any element of S. Suppose s ∈ X ∩ Y. Then, s ∈ X and s ∈ Y. Thus, we have

(SX∩̃SY)(s) = SX(s) ∩ SY(s) = U ∩U = U = SX∩Y(s)

Suppose s < X ∩ Y. Then, s < X or s < Y. Hence, we have

(SX∩̃SY)(s) = SX(s) ∩ SY(s) = ∅ = SX∩Y(s)
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Let s be any element of S. Suppose s ∈ X ∪ Y. Then, s ∈ X or s ∈ Y. Thus, we have

(SX∪̃SY)(s) = SX(s) ∪ SY(s) = U = SX∪Y(s)

Suppose s < X ∪ Y. Then, s < X and s < Y. Hence, we have

(SX∪̃SY)(s) = SX(s) ∪ SY(s) = ∅ = SX∪Y(s)

iii) Let s be any element of S. Suppose s ∈ XY. Then, s = xy for some x ∈ X and y ∈ Y. Thus we have,

(SX ◦ SY)(s) =
⋃

s=mn

(SX(m) ∩ SY(n))

⊇ SX(x) ∩ SY(y)
= U

which implies that (SX ◦ SY)(s) = U. Since s = xy ∈ XY, SXY(s) = U. Thus, SX ◦ SY = SXY.

In another case, when s < XY, we have s , xy for all x ∈ X and y ∈ Y. If s = mn for some m,n ∈ S, then we
have,

(SX ◦ SY)(s) =
⋃

s=mn

(SX(m) ∩ SY(n)) = ∅ = SXY(s)

If s , mn for all m,n ∈ S, then (SX ◦ SY)(s) = ∅ = SXY(s). In any case, we have SX ◦ SY = SXY.

4. Soft Intersection Semigroup

In this section, we define soft intersection semigroups, study their basic properties with respect to soft
operations and soft int-product.

Definition 4.1. Let S be a semigroup and fS be a soft set over U. Then, fS is called a soft intersection semigroup of
S, if

fS(xy) ⊇ fS(x) ∩ fS(y)

for all x, y ∈ S.

For the sake of brevity, soft intersection semigroup is abbreviated by SI-semigroup in what follows.

Example 4.2. Let S = {a, b, c, d} be the semigroup in Example 3.2 and fS be a soft set over U = S3, symmetric group. If
we construct a soft set such that fS(a) = {(1), (123), (132), (12)}, fS(b) = {(123), (12)}, fS(c) = {(12)}, fS(d) = {(123)}
then, one can easily show that fS is an SI-semigroup over U.

Now, let U =

{[
x 0
x 0

]
| x, y ∈ Z4

}
, 2 × 2 matrices withZ4 terms, be the universal set. We construct a soft set

1S over U by

1S(a) =

{[
0 0
0 0

]
,

[
1 0
1 0

]
,

[
2 0
2 0

]
,

[
3 0
3 0

]}
,

1S(b) =

{[
0 0
0 0

]
,

[
1 0
1 0

]}
,

1S(c) =

{[
0 0
0 0

]
,

[
2 0
2 0

]
,

[
3 0
3 0

]}
1S(d) =

{[
0 0
0 0

]
,

[
2 0
2 0

]}
.

Then, since
1S(dc) = 1S(b) + 1S(d) ∩ 1S(c),

1S is not an SI-semigroup over U.
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It is easy to see that if fS(x) = U for all x ∈ S, then fS is an SI-semigroup over U. We denote such a kind of
SI-semigroup by S̃. It is obvious that S̃ = SS, i.e. S̃(x) = U for all x ∈ S.

Lemma 4.3. Let fS be any SI-semigroup over U. Then, we have the followings:

i) S̃ ◦ S̃⊆̃S̃.

ii) fS ◦ S̃⊆̃S̃ and S̃ ◦ fS⊆̃S̃.

iii) fS∪̃S̃ = S̃ and fS∩̃S̃ = fS.

It is known that a nonempty subset A of S is a subsemigroup if and only if AA ⊆ A. It is natural to extend
this property to SI-semigroups with the following:

Theorem 4.4. Let fS be a soft set over U. Then, fS is an SI-semigroup over U if and only if

fS ◦ fS⊆̃ fS

Proof. Assume that fS is an SI-semigroup over U. Let a ∈ S. If ( fS ◦ fS)(a) = ∅, then it is obvious that

( fS ◦ fS)(a) ⊆ fS(a), thus fS ◦ fS⊆̃ fS.

Otherwise, there exist elements x, y ∈ S such that a = xy. Then, since fS is an SI-semigroup over U, we have:

( fS ◦ fS)(a) =
⋃
a=xy

( fS(x) ∩ fS(y))

⊆

⋃
a=xy

fS(xy)

=
⋃
a=xy

fS(a)

= fS(a)

Thus, fS ◦ fS⊆̃ fS.
Conversely, assume that fS ◦ fS⊆̃ fS. Let x, y ∈ S and a = xy. Then, we have:

fS(xy) = fS(a)
⊇ ( fS ◦ fS)(a)

=
⋃
a=xy

( fS(x) ∩ fS(y))

⊇ fS(x) ∩ fS(y)

Hence, fS is an SI-semigroup over U. This completes the proof.

Theorem 4.5. Let X be a nonempty subset of a semigroup S. Then, X is a subsemigroup of S if and only if SX is an
SI-semigroup of S.

Proof. Assume that X is a subsemigroup of S, that is, XX ⊆ X. Then, we have:

SX ◦ SX = SXX⊆̃SX (by Theorem 3.5 − (i) and Theorem 3.5 − (iii))

and so SX is an SI-semigroup over U by Theorem 4.4.
Conversely, let x ∈ XX and SX be an SI-semigroup of S. Then, by Theorem 4.4,

SX(x) ⊇ (SX ◦ SX)(x) = SXX(x) = U

implying that SX(x) = U, hence x ∈ X. Thus, XX ⊆ X and so, X is a subsemigroup of S.
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Proposition 4.6. Let fS and fT be SI-semigroup over U. Then, fS ∧ fT is an SI-semigroup over U.

Proof. Let (x1, y1), (x2, y2) ∈ S × T. Then,

fS∧T((x1, y1)(x2, y2)) = fS∧T(x1x2, y1y2)
= fS(x1x2) ∩ fT(y1y2)
⊇ ( fS(x1) ∩ fS(x2)) ∩ ( fT(y1) ∩ fT(y2))
= ( fS(x1) ∩ fT(y1)) ∩ ( fS(x2) ∩ fT(y2))
= fS∧T(x1, y1) ∩ fS∧T(x2, y2)

Therefore, fS ∧ fT is an SI-semigroup over U.

Definition 4.7. Let fS, fT be SI-semigroups over U. Then, the product of soft intersection semigroups fS and fT is
defined as fS × fT = fS×T, where fS×T(x, y) = fS(x) × fT(y) for all (x, y) ∈ S × T.

Proposition 4.8. If fS and fT are SI-semigroups over U, then so is fS × fT over U ×U.

Proof. By Definition 4.7, let fS × fT = fS×T, where fS×T(x, y) = fS(x) × fT(y) for all (x, y) ∈ S × T. Then, for all
(x1, y1), (x2, y2) ∈ S × T,

fS×T((x1, y1)(x2, y2)) = fS×T(x1x2, y1y2)
= fS(x1x2) × fT(y1y2)
⊇ ( fS(x1) ∩ fS(x2)) × ( fT(y1) ∩ fT(y2))
= ( fS(x1) × fT(y1)) ∩ ( fS(x2) × fT(y2))
= fS×T(x1, y1) ∩ fS×T(x2, y2)

Hence, fS × fT = fS×T is an SI-semigroup over U ×U.

Proposition 4.9. If fS and hS are SI-semigroups over U, then so is fS∩̃hS over U.

Proof. Let x, y ∈ S, then

( fS∩̃hS)(xy) = fS(xy) ∩ hS(xy)
⊇ ( fS(x) ∩ fS(y)) ∩ (hS(x) ∩ hS(y))
= ( fS(x) ∩ hS(x)) ∩ ( fS(y) ∩ hS(y))

= ( fS∩̃hS)(x) ∩ ( fS∩̃hS)(y)

Therefore, fS∩̃hS is an SI-semigroup over U.

Proposition 4.10. Let fS be a soft set over U and α be a subset of U such that α ∈ Im( fS), where Im( fS) = {α ⊆ U :
fS(x) = α, f or x ∈ S}. If fS is an SI-semigroup over U, thenU( fS;α) is a subsemigroup of S.

Proof. Since fS(x) = α for some x ∈ S, then ∅ ,U( fS;α) ⊆ S. Let x, y ∈ U( fS;α), then fS(x) ⊇ α and fS(y) ⊇ α.
We need to show that xy ∈ U( fS;α) for all x, y ∈ U( fS;α). Since fS is an SI-semigroup over U, it follows that

fS(xy) ⊇ fS(x) ∩ fS(y) ⊇ α ∩ α = α

implying that xy ∈ U( fS;α). Thus, the proof is completed.

Definition 4.11. Let fS be an SI-semigroup over U. Then, the subsemigroups U( fS;α) are called upper α-
subsemigroups of fS.

Proposition 4.12. Let fS be a soft set over U, U( fS;α) be upper α-subsemigroups of fS for each α ⊆ U and Im( fS)
be an ordered set by inclusion. Then, fS is an SI-semigroup over U.
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Proof. Let x, y ∈ S and fS(x) = α1 and fS(y) = α2. Suppose that α1 ⊆ α2. It is obvious that x ∈ U( fS;α1)
and y ∈ U( fS;α2). Since α1 ⊆ α2, x, y ∈ U( fS;α1) and sinceU( fS;α) is a subsemigroup of S for all α ⊆ U, it
follows that xy ∈ U( fS;α1). Hence, fS(xy) ⊇ α1 = α1 ∩ α2 = fS(x) ∩ fS(y). Thus, fS is an SI-semigroup over
U.

Proposition 4.13. Let fS and fT be soft sets over U and Ψ be a semigroup isomorphism from S to T. If fS is an
SI-semigroup over U, then so is Ψ( fS).

Proof. Let t1, t2 ∈ T. Since Ψ is surjective, then there exist s1, s2 ∈ S such that Ψ(s1) = t1 and Ψ(s2) = t2. Then,

(Ψ( fS))(t1t2)
=
⋃
{ fS(s) : s ∈ S,Ψ(s) = t1t2}

=
⋃
{ fS(s) : s ∈ S, s = Ψ−1(t1t2)}

=
⋃
{ fS(s) : s ∈ S, s = Ψ−1(Ψ(s1s2)) = s1s2}

=
⋃
{ fS(s1s2) : si ∈ S,Ψ(si) = ti, i = 1, 2}

⊇
⋃
{ fS(s1) ∩ fS(s2) : si ∈ S,Ψ(si) = ti, i = 1, 2}

= (
⋃
{ fS(s1) : s1 ∈ S,Ψ(s1) = t1}) ∩ (

⋃
{ fS(s2) : s2 ∈ S,Ψ(s2) = t2})

= (Ψ( fS))(t1) ∩ (Ψ( fS))(t2)

Hence, Ψ( fS) is an SI-semigroup over U.

Proposition 4.14. Let fS and fT be soft sets over U and Ψ be a semigroup homomorphism from S to T. If fT is an
SI-semigroup over U, then so is Ψ−1( fT).

Proof. Let s1, s2 ∈ S. Then,

(Ψ−1( fT))(s1s2) = fT(Ψ(s1s2))
= fT(Ψ(s1)Ψ(s2))
⊇ fT(Ψ(s1)) ∩ fT(Ψ(s2))
= (Ψ−1( fT))(s1) ∩ (Ψ−1( fT))(s2)

Hence, Ψ−1( fT) is an SI-semigroup over U.

5. Soft Intersection Left (Right, Two-Sided) Ideals of Semigroups

In this section, we define soft intersection left (right, two-sided) ideal of semigroups and obtain their
basic properties related with soft set operations and soft int-product.

Definition 5.1. A soft set over U is called a soft intersection left (right) ideal of S over U if

fS(ab) ⊇ fS(b) ( fS(ab) ⊇ fS(a))

for all a, b ∈ S. A soft set over U is called a soft intersection two-sided ideal (soft intersection ideal) of S if it is both
soft intersection left and soft intersection right ideal of S over U.

For the sake of brevity, soft intersection left (right) ideal is abbreviated by SI-left (right) ideal in what follows.

Example 5.2. Consider the semigroup S = {0, x, 1} defined by the following table:

. 0 x 1
0 0 0 0
x 0 x x
1 0 x 1
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Let fS be a soft set over S such that fS(0) = {0, x, 1}, fS(x) = {0, x}, fS(1) = {x}. Then, one can easily show that fS is an
SI-ideal of S over U. However if we define a soft set hS over S such that hS(0) = {1}, hS(x) = {x, 1}, hS(1) = {0, x, 1},
then, hS(x0) = hS(0) + hS(x) Thus, hS is not an SI-left ideal over S.

It is known that a nonempty subset A of S is a left ideal of S if and only if SA ⊆ A. It is natural to extend
this property to SI-semigroups with the following:

Theorem 5.3. Let fS be a soft set over U. Then, fS is an SI-left ideal of S over U if and only if

S̃ ◦ fS⊆̃ fS.

Proof. First assume that fS is an SI-left ideal of S over U. Let s ∈ S. If

(̃S ◦ fS)(s) = ∅,

then it is clear that S̃ ◦ fS⊆̃ fS. Otherwise, there exist elements x, y ∈ S such that s = xy. Then, since fS is an
SI-left ideal of S over U, we have:

(̃S ◦ fS)(s) =
⋃
s=xy

(̃S(x) ∩ fS(y))

⊆

⋃
s=xy

(U ∩ fS(xy))

=
⋃
s=xy

(U ∩ fS(s))

= fS(s)

Thus, we have S̃ ◦ fS⊆̃ fS.
Conversely, assume that S̃ ◦ fS⊆̃ fS. Let x, y ∈ S and s = xy. Then, we have:

fS(xy) = fS(s)

⊇ (̃S ◦ fS)(s)

=
⋃

s=mn

(̃S(m) ∩ fS(n))

⊇ S̃(x) ∩ fS(y)
= U ∩ fS(y)
= fS(y)

Hence, fS is an SI-left ideal over U. This completes the proof.

It is known that a nonempty subset A of S is a right ideal of S if and only is AS ⊆ A. It is natural to extend
this property to SI-semigroups with the following:

Theorem 5.4. Let fS be a soft set over U. Then, fS is an SI-right ideal of S over U if and only if

fS ◦ S̃⊆̃ fS

Proof. Similar to the proof of Theorem 5.3.

Theorem 5.5. Let fS be a soft set over U. Then, fS is an SI-ideal of S over U if and only if

fS ◦ S̃⊆̃ fS and S̃ ◦ fS⊆̃ fS

Corollary 5.6. S̃ is both SI-right and SI-left ideal of S.
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Proof. Follows from Lemma 4.3-(i).

Theorem 5.7. Let X be a nonempty subset of a semigroup S. Then, X is a left (right, two-sided) ideal of S if and only
if SX is an SI-left (right, two-sided) ideal of S over U.

Proof. We give the proof for the SI-left ideals. Assume that X is a left ideal of S, that is, SX ⊆ X. Then, we
have:

S̃ ◦ SX = SS ◦ SX = SSX⊆̃SX

thus, SX is an SI-left ideal of S over U by Theorem 5.3.
Conversely, let x ∈ SX and SX be an SI-left ideal of S over U. Then,

SX(x) ⊇ (̃S ◦ SX)(x) = (SS ◦ SX)(x) = SSX(x) = U

implying that SX(x) = U, hence x ∈ X. Thus, SX ⊆ X and X is a left ideal of S.

Proposition 5.8. Let fS be a soft set over U. Then, fS is an SI-ideal of S over U if and only if

fS(xy) ⊇ fS(x) ∪ fS(y)

for all x, y ∈ S.

Proof. Let fS be an SI-ideal of S over U. Then,

fS(xy) ⊇ fS(x) and fS(xy) ⊇ fS(y)

for all x, y ∈ S. Thus, fS(xy) ⊇ fS(x) ∪ fS(y) Conversely suppose that fS(xy) ⊇ fS(x) ∪ fS(y) for all x, y ∈ S. It
follows that

fS(xy) ⊇ fS(x) ∪ fS(y) ⊇ fS(x) and fS(xy) ⊇ fS(x) ∪ fS(y) ⊇ fS(y)

so fS is an SI-ideal of S over U.

It is obvious that every left (right, two-sided) ideal of S is a subsemigroup of S. Moreover, we have the
following:

Theorem 5.9. Let fS be a soft set over U. Then, if fS is an SI-left (right, two-sided) ideal of S over U, fS is an
SI-semigroup over U.

Proof. We give the proof for SI-left ideals. Let fS be an SI-left ideal of S over U. Then, fS(xy) ⊇ fS(y) for all
x, y ∈ S. Thus, fS(xy) ⊇ fS(y) ⊇ fS(x) ∩ fS(y), so fS is an SI-semigroup over U.

Proposition 5.10. If fS is an SI-right (left) ideal of S over U, then

fS∪̃(̃S ◦ fS) ( fS∪̃( fS ◦ S̃)

is an SI-ideal of S over U.

Proof. Assume that fS is an SI-right ideal of S. Then,

S̃ ◦ ( fS∪̃(̃S ◦ fS)) = (̃S ◦ fS)∪̃(̃S ◦ (̃S ◦ fS)) (by Theorem 3.3 (iii))

= (̃S ◦ fS)∪̃((̃S ◦ S̃) ◦ fS) (by Theorem 3.3 (i))

⊆̃ (̃S ◦ fS)∪̃(̃S ◦ fS) (by Lemma 4.3 (i))

= S̃ ◦ fS

⊆̃ fS∪̃(̃S ◦ fS)
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Thus, fS∪̃(̃S ◦ fS) is an SI-left ideal of S over U. Also,

( fS∪̃(̃S ◦ fS)) ◦ S̃ = ( fS ◦ S̃)∪̃((̃S ◦ fS) ◦ S̃)

= ( fS ◦ S̃)∪̃(̃S ◦ ( fS ◦ S̃))

⊆̃ ( fS ◦ S̃)∪̃(̃S ◦ fS) (since fS ◦ S̃⊆̃ fS)

⊆̃ fS∪̃(̃S ◦ fS)

Hence, fS∪̃(̃S ◦ fS) is an SI-right ideal of S over U. This completes the proof.

It is known that if R is a right ideal of S and L left ideal o f S, then RL ⊆ R∩ L holds. Moreover, we have the
following:

Theorem 5.11. Let fS be an SI-right ideal of S over U and 1S be an SI-left ideal of S over U. Then

fS ◦ 1S⊆̃ fS∩̃1S

Proof. Let fS and 1S be SI-right and SI-left ideal of S over U, respectively. Then, since fS, 1S⊆̃S̃ always holds,
we have:

fS ◦ 1S⊆̃ fS ◦ S̃⊆̃ fS and fS ◦ 1S⊆̃S̃ ◦ 1S⊆̃1.

It follows that fS ◦ 1S⊆̃ fS∩̃1S.

Now, we show that if fS is an SI-right ideal of S over U and 1S is an SI-left ideal of S over U, then

fS ◦ 1S+̃ fS∪̃1S

with the following example:

Example 5.12. Consider the semigroup S and SI-ideal fS in Example 5.2. Let 1S be a soft set over S such that
1S(0) = {x, 1}, 1S(x) = {x}, 1S(1) = {x}, One can easily show that 1S is an SI-ideal of S over U. However,

( fS ◦ 1S)(x) =
⋃
x=ab

( fS(a) ∩ 1S(b)) = {x} + ( fS∪̃1S)(x) = {0, x}.

Proposition 5.13. Let fS and hS be SI-left (right) ideals of S over U. Then, fS ◦ hS is an SI-left (right) ideal of S over
U.

Proof. Let fS and hS be SI-left ideal of S and x, y ∈ S. Then,

( fS ◦ hS)(y) =
⋃
y=pq

( fS(p) ∩ hS(q))

If y = pq, then xy = x(pq) = (xp)q. Since fS is an SI-left ideal of S, fS(xp) ⊇ fS(p). Thus,

( fS ◦ hS)(y) =
⋃
y=pq

( fS(p) ∩ hS(q))

⊆

⋃
xy=xpq

( fS(xp) ∩ hS(q))

= ( fS ◦ hS)(xy)

So,
( fS ◦ hS)(xy) ⊇ ( fS ◦ hS)(y)

If y is not expressible as y = pq, then ( fS ◦ hS)(y) = ∅ ⊆ ( fS ◦ hS)(xy). Thus, fS ◦ hS is an SI-left ideal of S.

We give the following propositions without proof. The proofs are similar to those in Section 4.
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Proposition 5.14. Let fS and fT be SI-left (right) ideals of S over U. Then, fS ∧ fT is an SI-left (right) ideal of S× T
over U.

Proposition 5.15. If fS and fT are SI-left (right) ideals of S over U, then so is fS × fT of S × T over U ×U.

Proposition 5.16. If fS and hS are two SI-left (right) ideals of S over U, then so is fS∩̃hS of S over U.

Proposition 5.17. Let fS be a soft set over U and α be a subset of U such that α ∈ Im( fS). If fS is an SI-left (right)
ideal of S over U, thenU( fS;α) is a left (right) ideal of S.

Definition 5.18. Let fS be an SI-left (right) ideal of S over U. Then, the left (right) idealsU( fS;α) are called upper
α-left (right) ideals of fS.

Proposition 5.19. Let fS be a soft set over U, U( fS;α) be upper α-ideals of fS for each α ⊆ U and Im( fS) be an
ordered set by inclusion. Then, fS is an SI-left (right) ideal of S over U.

In order to show Proposition 5.17, we have the following example:

Example 5.20. Consider the semigroup in Example 3.2. Define a soft set fS over U = D2 = {e, x, y, yx} such that
fS(a) = {e, x, y, yx}, fS(b) = {e, x, y}, fS(c) = {e, x}, fS(d) = {e, y}. Then, one can easily show that fS is an SI-ideal of
S over U. By taking into account Im( fS), we have: U( fS; {e, x, y, yx}) = {a},U( fS; {e, x, y}) = {a, b},U( fS; {e, x}) =
{a, b, c},U( fS; {e, y}) = {a, b, d}. One can easily show that {a}, {a, b}, {a, b, c} and {a, b, d} are two-sided ideals of S.

In order to show Proposition 5.19, we have the following example:

Example 5.21. Consider the semigroup in Example 3.2. Define a soft set fS over U = D2 = {e, x, y, yx} such that
fS(a) = {e, x, y, yx}, fS(b) = {e, x, yx}, fS(c) = {e, x}, fS(d) = {x}, By taking into account

Im( fS) = {{e, x, y, yx}, {e, x, yx}, {e, x}, {x}}

and considering that Im( fS) is ordered by inclusion, we have:

U( fS;α) =


{a, b, c, d}, if α = {x}
{a, b, c}, if α = {e, x}
{a, b}, if α = {e, x, yx}
{a}, if α = {e, x, y, yx}

Since {a}, {a, b}, {a, b, c} and {a, b, c, d} are two-sided ideals of S, fS is an SI-ideal of S over U.
Now we define a soft set hS over U = D2 such that hS(a) = {e, x, y, yx}, hS(b) = {e, x}, hS(c) = {e}, hS(d) = {e, x, yx}.

By taking into account Im( fS) = {{e, x, y, yx}, {e, x}, {e}, {e, x, yx}} and considering that Im( fS) is ordered by inclusion,
we have:

U( fS;α) =


{a, b, c, d}, if α = {e}
{a, b, d}, if α = {e, x}
{a, d}, if α = {e, x, yx}
{a}, if α = {e, x, y, yx}

Since {a, d}S * {a, d} and S{a, d} * {a, d} {a, d} is not a two-sided ideal of S. Moreover, since hS(dd) = hS(b) + hS(d)
hS is not an SI-ideal of S over U.

Proposition 5.22. Let fS and fT be soft sets over U and Ψ be a semigroup isomorphism from S to T. If fS is an SI-left
(right) ideal of S over U, then so is Ψ( fS) of T over U.

Proposition 5.23. Let fS and fT be soft sets over U and Ψ be a semigroup homomorphism from S to T. If fT is an
SI-left (right) ideal of T over U, then so is Ψ−1( fT) of S over U.
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6. Soft Intersection Bi-Ideals of Semigroups

In this section, we define soft intersection bi-ideals and study their properties as regards soft set opera-
tions and soft int-product.

Definition 6.1. An SI-semigroup fS over U is called a soft intersection bi-ideal of S over U if

fS(xyz) ⊇ fS(x) ∩ fS(z)

for all x, y, z ∈ S.

For the sake of brevity, soft intersection bi-ideal is abbreviated by SI-bi-ideal in what follows.

Example 6.2. Let S = {0, a, b, c} be the semigroup with the operation table given below.

+ 0 a b c
0 0 0 0 0
a 0 a b 0
b 0 0 0 0
c 0 c 0 0

Define the soft set fS over U = Z4 such that fS(0) = {0, 1, 2}, fS(a) = {0, 1}, fS(b) = {0}, fS(c) = {1, 2}. Then, one
can easily show that fS is an SI bi-ideal of S over U.

It is known that a nonempty subset A of S is a bi-ideal of S if and only if AA ⊆ A and ASA ⊆ A. It is
natural to extend this property to SI-semigroups with the following:

Theorem 6.3. Let fS be a soft set over U. Then, fS is an SI-bi-ideal of S over U if and only if

fS ◦ fS⊆̃ fS and fS ◦ S̃ ◦ fS⊆̃ fS

Proof. First assume that fS is an SI-bi-ideal of S over U. Since fS is an SI-semigroup over U, by Theorem 4.4,
we have

fS ◦ fS⊆̃ fS.

Let s ∈ S. In the case, when ( fS ◦ S̃ ◦ fS)(s) = ∅, then it is clear that fS ◦ S̃ ◦ fS⊆̃ fS, Otherwise, there exist
elements x, y, p, q ∈ S such that

s = xy and x = pq
Then, since fS is an SI-bi-ideal of S over U, we have:

fS(s) = fS(xy) = fS((pq)y) ⊇ fS(p) ∩ fS(y)

Thus, we have

( fS ◦ S̃ ◦ fS)(s) = [( fS ◦ S̃) ◦ fS](s)

=
⋃
s=xy

[( fS ◦ S̃)(x) ∩ fS(y)]

=
⋃
s=xy

[(
⋃
x=pq

( fS(p) ∩ S̃(q)) ∩ fS(y)]

=
⋃
s=xy

[(
⋃
x=pq

( fS(p) ∩U) ∩ fS(y)]

=
⋃

s=pqy

( fS(p) ∩ fS(y))

⊆

⋃
s=pqy

fS(pqy)

= fS(xy)
= fS(s)
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Hence, fS ◦ S̃ ◦ fS⊆̃ fS. Here, note that if x , pq, then ( fS ◦ S̃)(x) = ∅, and so, ( fS ◦ S̃ ◦ fS)(s) = ∅ ⊆ fS(s).
Conversely, assume that fS ◦ fS⊆̃ fS. By Theorem 4.4, fS is an SI-semigroup of S. Let x, y, z ∈ S and

s = xyz. Then, since fS ◦ S̃ ◦ fS⊆̃ fS, we have

fS(xyz) = fS(s)

⊇ ( fS ◦ S̃ ◦ fS)(s)

= [( fS ◦ S̃) ◦ fS](s)

=
⋃

s=mn

[( fS ◦ S̃)(m) ∩ fS(n)]

⊇ ( fS ◦ S̃)(xy) ∩ fS(z)

= [
⋃

xy=pq

( fS(p) ∩ S̃(q)] ∩ fS(z)

⊇ (( fS(x) ∩ S̃(y)) ∩ fS(z)
= (( fS(x) ∩U) ∩ fS(z)
= fS(x) ∩ fS(z)

Thus, fS is an SI-bi-ideal of S over U. This completes the proof.

Theorem 6.4. Let X be a nonempty subset of a semigroup S. Then, X is a bi-ideal of S if and only if SX is an
SI-bi-ideal of S over U.

Proof. Assume that X is a bi-ideal of S, that is, XX ⊆ X and XSX ⊆ X. Then, we have

SX ◦ SX = SXX⊆̃SX (since XX ⊆ X).

Thus, SX is an SI-semigroup over U. Moreover;

SX ◦ S̃ ◦ SX = SX ◦ SS ◦ SX = SXSX⊆̃SX (since XSX ⊆ X)

This means that SX is a bi-ideal of S.
Conversely, letSX be an SI-bi-ideal of S over U. It means thatSX is an SI-semigroup over U. Let x ∈ XX.

Then,
SX(x) ⊇ (SX ◦ SX)(x) = SXX(x) = U

and so x ∈ X. Thus, XX ⊆ X and X is a subsemigroup S. Next, let y ∈ XSX. Thus;

SX(y) ⊇ (SX ◦ S̃ ◦ SX)(y) = (SX ◦ SS ◦ SX)(y) = SXSX(y) = U

and so y ∈ X. Thus, XSX ⊆ X and X is a bi-ideal of S.

It is known that every left (right, two sided) ideal of a semigroup S is a bi-ideal of S. Moreover, we have
the following:

Theorem 6.5. Every SI-left (right, two sided) ideal of a semigroup S over U is an SI-bi-ideal of S over U.

Proof. Let fS be an SI-left (right, two sided) ideal of S over U and x, y, z ∈ S. Then, fS is as SI-semigroup by
Theorem 5.9. Moreover,

fS(xyz) = fS((xy)z) ⊇ fS(z) ⊇ fS(x) ∩ fS(z)

Thus, fS is an SI-bi-ideal of S.

Theorem 6.6. Let fS be any soft subset of a semigroup S and 1S be any SI-bi-ideal of S over U. Then, the soft
int-products fS ◦ 1S and 1S ◦ fS are SI-bi-ideals of S over U.
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Proof. We show the proof for fS ◦ 1S. To see that fS ◦ 1S is an SI-bi-ideal of S over U, first we need to show
that fS ◦ 1S is an SI-semigroup over U. Thus,

( fS ◦ 1S) ◦ ( fS ◦ 1S) = fS ◦ (1S ◦ ( fS ◦ 1S))

⊆̃ fS ◦ (1S ◦ (̃S ◦ 1S)) (since fS⊆̃S̃)

= fS ◦ (1S ◦ S̃ ◦ 1S)

⊆̃ fS ◦ 1S (since 1S ◦ S̃ ◦ 1S⊆̃1S))

Hence, by Theorem 4.4, fS ◦ 1S is an SI-semigroup over U. Moreover we have:

( fS ◦ 1S) ◦ S̃ ◦ ( fS ◦ 1S) = fS ◦ (1S ◦ (̃S ◦ fS) ◦ 1S)

⊆̃ fS ◦ (1S ◦ S̃ ◦ 1S) (since S̃ ◦ fS⊆̃S̃)

⊆̃ fS ◦ 1S

Thus, it follows that fS ◦ 1S is an SI-bi-ideal of S over U. It can be seen in a similar way that 1S ◦ fS is an
SI-bi-ideal of S over U. This completes the proof.

Proposition 6.7. Let fS and fT be SI-bi-ideals over U. Then, fS ∧ fT is an SI-bi-ideal of S × T over U.

Proposition 6.8. If fS and fT are SI-bi-ideals of S over U, then so is fS × fT of S × T over U ×U.

Proposition 6.9. If fS and hS are two SI-bi-ideals of S over U, then so is fS∩̃hS of S over U.

Proposition 6.10. Let fS be a soft set over U and α be a subset of U such that α ∈ Im( fS). If fS is an SI-bi-ideal of S
over U, thenU( fS;α) is a bi-ideal of S.

Definition 6.11. If fS is an SI-bi-ideal of S over U, then bi-idealsU( fS;α) are called upper α bi-ideals of fS.

Proposition 6.12. Let fS be a soft set over U, U( fS;α) be upper α bi-ideals of fS for each α ⊆ U and Im( fS) be an
ordered set by inclusion. Then, fS is an SI-bi-ideal of S over U.

Proposition 6.13. Let fS and fT be soft sets over U and Ψ be a semigroup isomorphism from S to T. If fS is an
SI-bi-ideal of S over U, then so is Ψ( fS) of T over U.

Proposition 6.14. Let fS and fT be soft sets over U and Ψ be a semigroup homomorphism from S to T. If fT is an
SI-bi-ideal of T over U, then so is Ψ−1( fT) of S over U.

7. Regular semigroups

In this section, we characterize a regular semigroup in terms of SI-ideals.
A semigroup S is called regular if for every element a of S there exists an element x in S such that

a = axa

or equivalently a ∈ aSa. There is a characterization of a regular semigroup in [20] as follows:

Proposition 7.1. [20] For a semigroup S, the following conditions are equivalent:

1) S is regular.

2) RL = R ∩ L for every right ideal R and left ideal L of S.

It is natural to extend this property to SI-ideals of S with the following:

Theorem 7.2. For a semigroup S, the following conditions are equivalent:
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1) S is regular.

2) fS ◦ 1S = fS∩̃1S for every SI-right ideal fS of S over U and SI-left ideal 1S of S over U.

Proof. Let S be a regular semigroup and fS be an SI-right ideal of S and 1S be an SI-left ideal of S over U. In
Theorem 5.11, we show that

fS ◦ 1S⊆̃ fS∩̃1S

for every SI-right ideal fS of S and SI-left ideal 1S of S over U. Therefore, it suffices to show that fS∩̃1S⊆̃ fS◦1S.
Let s be any element of S. Then, since S is regular, there exists an element x in S such that s = sxs. Thus, we
have

( fS ◦ 1S)(s) =
⋃
s=ab

( fS(a) ∩ 1S(b))

⊇ fS(sx) ∩ 1S(s)
⊇ fS(s) ∩ 1S(s)

= ( fS∩̃1S)(s)

Thus, fS ◦ 1S = fS∩̃1S.
Conversely, assume that (2) holds. In order to show that S is regular, we need to illustrate that RL = R∩L

for every for every right ideal R of S and left ideal L of S over U. Let R and L be any right ideal and left
ideal of S, respectively. It is known that RL ⊆ R ∩ L always holds. So it is enough to show that R ∩ L ⊆ RL.
Let a be any element of R ∩ L. Then, by Theorem 5.7, the soft characteristic functions SR and SL of R and L
are SI-right ideal and SI-left ideal of S, respectively. Thus, we have:

SRL(a) = (SR ◦ SL)(a) = (SR∩̃SL)(a) = SR∩L(a) = U

which implies that a ∈ RL. Thus, R ∩ L ⊆ RL. It follows by Proposition 7.1 that S is regular. Hence (2)
implies (1).

Corollary 7.3. For a semigroup S, the following conditions are equivalent:

1) S is regular.

2) fS ◦ 1S = fS∩̃1S for every SI-ideals fS and 1S of S over U.

Proposition 7.4. Every SI-left (right) ideal of a regular semigroup is idempotent.

Proof. Let hS be an SI-right ideal of S. Then,

hS ◦ hS⊆̃hS ◦ S̃⊆̃hS.

Now, we show that hS⊆̃hS ◦ hS. Since S is regular, there exists an element x ∈ S such that a = axa for all a ∈ S.
So, we have;

(hS ◦ hS)(a) =
⋃

a=axa

(hS(ax) ∩ hS(a))

⊇ hS(a) ∩ hS(a)
= hS(a)

Hence, hS⊆̃hS ◦ hS and so (hS)2 = hS ◦ hS = hS.
Now, let kS be any SI-left ideal of S. Then,

kS ◦ kS⊆̃S̃ ◦ kS⊆̃kS.
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Thus, we show that kS⊆̃kS ◦ kS. Since S is regular, there exists an element x ∈ S such that a = axa for all a ∈ S.
Thus, we have;

(kS ◦ kS)(a) =
⋃

a=axa

(kS(a) ∩ kS(xa))

⊇ (kS(a) ∩ kS(a))
= kS(a)

Hence, kS⊆̃kS ◦ kS and so (kS)2 = kS ◦ kS = kS.

Corollary 7.5. Every SI-ideal of a regular semigroup is idempotent.

Corollary 7.6. The set of all SI-ideals of a regular semigroup S forms a semilattice under the soft int-product.

Proof. Let S be a regular semigroup and fS, 1S and hS be SI-ideals of S over U. Then, it follows from Theorem
3.3 (i) that

( fS ◦ 1S) ◦ hS = fS ◦ (1S ◦ hS).

By Corollary 7.5, fS is idempotent. Moreover, since fS∩̃1S = 1S∩̃ fS, by Corollary 7.3, fS ◦ 1S = 1S ◦ fS.Hence,
the soft int-product is commutative. This completes the proof.

Proposition 7.7. Let the set of all SI-ideals of S be a regular semigroup of S under the soft int-product. Then, every
SI-ideal of S has the form fS = fS ◦ S̃ ◦ fS.

Proof. Let fS be an SI-ideal of S. Then, by assumption, there exists an SI-ideal 1S of S such that

fS = fS ◦ 1S ◦ fS.

Thus, we have
fS = fS ◦ 1S ◦ fS⊆̃ fS ◦ S̃ ◦ fS⊆̃( fS ◦ S̃)∩̃(̃S ◦ fS)⊆̃ fS∩̃ fS = fS,

since
fS ◦ S̃ ◦ fS⊆̃ fS ◦ S̃ ◦ S̃⊆̃ fS ◦ S̃

and
fS ◦ S̃ ◦ fS⊆̃S̃ ◦ S̃ ◦ fS⊆̃S̃ ◦ fS.

Hence, fS = fS ◦ S̃ ◦ fS.

Definition 7.8. An SI-ideal fS of a semigroup S is said to be soft strongly irreducible if and only if for every SI- ideals
1S and hS of S, 1S∩̃hS⊆̃ fS implies that 1S⊆̃ fS or hS⊆̃ fS.

Definition 7.9. An SI-ideal hS of a semigroup S is said to be soft prime ideal if for any SI-ideals fS and 1S of S,
fS ◦ 1S⊆̃hS implies that fS⊆̃hS or 1S⊆̃hS.

Definition 7.10. The set of SI-ideals of a semigroup is called totally ordered under inclusion if for any SI-ideals fS
and 1S of S, either fS⊆̃1S or 1S⊆̃ fS.

Proposition 7.11. In a regular semigroup S, an SI-ideal is soft strongly irreducible if and only if it is soft prime.

Proof. It follows from Corollary 7.3, Definition 7.8 and Definition 7.9.

Proposition 7.12. Every SI-ideal of a regular semigroup S is soft prime if and only if the set of SI-ideals of S is totally
ordered under inclusion.

Proof. It follows from Corollary 7.3, Definition 7.9 and Definition 7.10.
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As is known a semigroup S is regular if and only if B = BSB for all bi-ideals B of S. Now, we shall give a
characterization of a regular semigroup by SI-bi-ideals.

Theorem 7.13. For a semigroup S, the following conditions are equivalent:

1) S is regular.

2) fS = fS ◦ S̃ ◦ fS for every SI-bi-ideal fS of S over U.

Proof. First assume that (1) holds. Let fS be any SI-bi-ideal fS of S over U and s be any element of S. Then,
since S is regular, there exists an element x ∈ S such that s = sxs. Thus, we have;

( fS ◦ S̃ ◦ fS)(s) = [( fS ◦ S̃) ◦ fS](s)

=
⋃
s=ab

[( fS ◦ S̃)(a) ∩ fS(b)]

⊇ ( fS ◦ S̃)(sx) ∩ fS(s)

=
⋃

sx=mn

{( fS(m) ∩ S̃(n)} ∩ fS(s)

⊇ ( fS(s) ∩ S̃(x)) ∩ fS(s)
= ( fS(s) ∩U) ∩ fS(s)
= fS(s)

and so, we have fS ◦ S̃◦ fS⊇̃ fS. Since fS is an SI-bi-ideal of S, fS ◦ S̃◦ fS⊆̃ fS. Thus, fS ◦ S̃◦ fS = fS which means
that (1) implies (2).

Conversely assume that (2) holds. In order to show that S is regular, we need to illustrate that B = BSB
for every bi-ideal B of S. It is obvious that BSB ⊆ B. Therefore, it is enough to show that B ⊆ BSB. Let b ∈ B.
Then, by Theorem 6.4, the soft characteristic function SB of B is an SI-bi-ideal of S. Thus, we have;

(SBSB)(b) = (SB ◦ SS ◦ SB)(b) = (SB ◦ S̃ ◦ SB)(b) = (SB)(b) = U

which means that b ∈ BSB. Thus, B ⊆ BSB and so B = BSB. It follows that S is regular, so (2) implies (1).

Theorem 7.14. Let fS be a soft set of a regular semigroup S. Then, the following conditions are equivalent:

1) fS is an SI-bi-ideal of S.

2) fS may be presented in the form fS = 1S ◦ hS, where 1S is an SI-right ideal and hS is an SI-left ideal of S over U.

Proof. First assume that (1) holds. Since S is regular, it follows from Theorem 7.13 that fS = fS ◦ S̃ ◦ fS. Thus,
we have

fS = fS ◦ S̃ ◦ fS

= fS ◦ S̃ ◦ ( fS ◦ S̃ ◦ fS)

= [ fS ◦ (̃S ◦ fS)] ◦ (̃S ◦ fS)

⊆̃ ( fS ◦ S̃) ◦ (̃S ◦ fS) (since S̃ ◦ fS⊆̃S̃)

Similarly,

( fS ◦ S̃) ◦ (̃S ◦ fS) = fS ◦ (̃S ◦ S̃) ◦ fS)

⊆̃ fS ◦ S̃ ◦ fS (since S̃ ◦ S̃⊆̃S̃)
= fS
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Namely, fS = ( fS ◦ S̃) ◦ (̃S ◦ fS). Here, we can easily show that fS ◦ S̃ is an SI-right ideal of S and S̃ ◦ fS is an
SI-left ideal of S. In fact

( fS ◦ S̃) ◦ S̃ = fS ◦ (̃S ◦ S̃)⊆̃ fS ◦ S̃

Similarly
S̃ ◦ (̃S ◦ fS) = (̃S ◦ S̃) ◦ fS⊆̃S̃ ◦ fS

implying that S̃ ◦ fS is an SI-left ideal of S.
Conversely assume that (2) holds. It means that there exists an SI-right ideal 1S and SI-left ideal hS of S

such that fS = 1S ◦ hS. By Theorem 6.5, every SI-left (right) ideal of S is an SI-bi-ideal of S. Thus, 1S and hS
are SI-bi-ideals of S. Moreover, 1S ◦ hS = fS is an SI-bi-ideal of S by Theorem 6.6. Therefore, we obtain that
(2) implies (1). This completes the proof.

Theorem 7.15. For a semigroup S, the following conditions are equivalent:

1) S is regular.

2) fS∩̃1S = fS ◦ 1S ◦ fS for every SI-bi-ideal fS of S and SI-ideal 1S of S over U.

Proof. First assume that (1) holds. Let fS be any SI-bi-ideal and 1S be SI-ideal of S over U. Then,

fS ◦ 1S ◦ fS⊆̃ fS ◦ S̃ ◦ fS⊆̃ fS

and
fS ◦ 1S ◦ fS⊆̃S̃ ◦ (1S ◦ S̃)⊆̃S̃ ◦ 1S⊆̃1S

so fS ◦1S ◦ fS⊆̃ fS∩̃1S. To show that fS∩̃1S⊆̃ fS ◦1S ◦ fS holds, let s be any element of S. Since S is regular, there
exists an element x in S such that

s = sxs (s = sx(sxs))

Since 1S is an SI-ideal of S, we have

1s(xsx) = 1S(x(sx)) ⊇ 1S(sx) ⊇ 1S(s)

Therefore, we have

( fS ◦ 1S ◦ fS)(s) = [ fS ◦ (1S ◦ fS)](s)

=
⋃

s=mn

[ fS(m) ∩ (1S ◦ fS)(n)]

⊇ fS(s) ∩ (1S ◦ fS)(xsxs)

= fS(s) ∩ {
⋃

xsxs=yz

[1S(y) ∩ fS(z)]}

= fS(s) ∩ (1S(xsx) ∩ fS(s))
⊇ ( fS(s) ∩ 1S(s) ∩ fS(s)
⊇ fS(s) ∩ 1S(s)

= ( fS∩̃1S)(s)

so we have fS∩̃1S⊆̃ fS ◦ 1S ◦ fS. Thus we obtain that fS∩̃1S = fS ◦ 1S ◦ fS, hence (1) implies (2).
Conversely assume that (2) holds. In order to show that S is regular, it is enough to show that fS = fS◦S̃◦ fS

for all SI-bi-ideals of S over U by Theorem 7.13. Since S̃ is an SI-ideal of S, we have fS = fS∩̃S̃ = fS ◦ S̃ ◦ fS
Thus, (2) implies (1). This completes the proof.

Theorem 7.16. For a semigroup S, the following conditions are equivalent:
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1) S is regular.

2) hS∩̃ fS∩̃1S⊆̃hS ◦ fS ◦ 1S for every SI-right ideal hS, every SI-bi-ideal fS and every SI-left ideal 1S of S.

Proof. Assume that (1) holds. Let hS, fS and 1S be SI-right, SI-bi-ideal and SI-left ideal of S, respectively. Let
a be any element of S. Since S is regular, there exists an element x in S such that a = axa. Hence, we have:

(hS ◦ fS ◦ 1S)(a) = [hS ◦ ( fS ◦ 1S)](a)

=
⋃
a=yz

[hS(y) ∩ ( fS ◦ 1S)(z)]

⊇ hS(ax) ∩ ( fS ◦ 1S)(a)

= hS(ax) ∩ {
⋃
a=pq

[ fS(p) ∩ 1S(q)]}

⊇ hS(a) ∩ ( fS(a) ∩ 1S(xa))
⊇ hS(a) ∩ ( fS(a) ∩ 1S(a))

= (hS∩̃ fS∩̃1S)(a)

so we have hS ◦ fS ◦ 1S⊆̃hS ∩ fS ∩ 1S. Thus, (1) implies (2).
Conversely assume that (2) holds. Let hS and 1S be any SI-right ideal and SI-left ideal of S, respectively.

It is obvious that
hS ◦ 1S⊆̃hS∪̃1S.

Since S̃ itself is an SI-bi-ideal of S by Theorem 6.3, by assumption we have:

hS∩̃1S = hS∩̃S̃∩̃1S⊆̃hS ◦ S̃ ◦ 1S = hS ◦ (̃S ◦ 1S)⊆̃hS ◦ 1S

It follows that hS∩̃1S⊆̃hS ◦ 1S for every SI-right ideal hS and SI-left ideal 1S of S. It follows by Theorem 7.2
that S is regular. Hence, (2) implies (1). This completes the proof.

Theorem 7.17. For a regular semigroup S, the following conditions are equivalent:

1) Every bi-ideal of S is a right (left, two-sided) ideal of S.

2) Every SI-bi-ideal of S is an SI-right (left, two-sided) ideal of S.

Proof. We give the proof for the SI-right ideals. First assume that (1) holds. Let fS any SI bi-ideal of S and
a, b any elements in S. One easily show that aSa is a bi-ideal of S. By assumption, aSa is a right ideal of S.
Since S is regular,

ab ∈ (aSa)S = a((Sa)S) ⊆ aSa

This implies that there exists an element x ∈ S such that

ab = axa.

Then, since fS is an SI bi-ideal of S, we have

fS(ab) = fS(axa) ⊇ fS(a) ∩ fS(a) = fS(a).

This means that fS is an SI-right ideal of S and that (1) implies (2).
Conversely, assume that (2) holds. Let B be any bi-ideal of S. Then, by Theorem 6.4, the soft characteristic

function SB of B is an SI bi-ideal of S. Thus, by assumption, SB is an SI-right ideal of S. Again, by Theorem
6.4, B is a right ideal of S. Therefore, (2) implies (1). This completes the proof.
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8. Intra-Regular Semigroups

In this section, we characterize an intra-regular semigroup in terms of SI-ideals. A semigroup S is called
intra-regular if for every element a of S there exist elements x and y in S such that

a = xa2y

Proposition 8.1. [25] For a semigroup S, the following conditions are equivalent:

1) S is intra-regular.

2) L ∩ R ⊆ LR for every left ideal L and every right ideal R of S.

It is natural to extend this property to SI-ideals of S with the following:

Theorem 8.2. For a semigroup S, the following conditions are equivalent:

1) S is intra-regular.

2) 1S∩̃ fS⊆̃1S ◦ fS for every SI-right ideal fS of S and SI-left ideal 1S of S over U.

Proof. First assume that (1) holds. Let fS be any SI-right ideal and 1S be SI-left ideal of S over U and a be
any element of S. Then, since S is intra-regular, there exist elements x and y in S such that a = xa2y. Thus,

(1S ◦ fS)(a) =
⋃
a=bc

(1S(b) ∩ fS(c))

⊇ (1S(xa) ∩ fS(ay))
⊇ (1S(a) ∩ fS(a))

= (1S∩̃ fS)(a)

Thus, 1S∩̃ fS⊆̃1S ◦ fS, which means that (1) implies (2).
Conversely assume that 1S∩̃ fS⊆̃1S ◦ fS for every SI-right ideal fS and SI-left ideal 1S of S over U. In order

to show that S in intra-regular, it suffices to illustrate L ∩ R ⊆ LR for every left ideal L and for every right
ideal R of S. Let L be a left ideal and R be a right ideal of S and a ∈ L ∩ R. Then, a ∈ L and a ∈ R. Thus, the
soft characteristic functions SL of L and SR of R is an SI-left ideal and SI-right ideal of S, respectively. Thus,
we have;

SLR(a) = (SL ◦ SR)(a)⊇̃(SL∩̃SR(a) = SL(a) ∩ SR(a) = U

which means that a ∈ LR. Thus, L ∩ R ⊆ LR. It follows that S is intra-regular, so (2) implies (1).

The following characterization of a semigroup is both regular and intra-regular.

Proposition 8.3. [25] For a semigroup S, the following conditions are equivalent:

1) S is both regular and intra-regular.

2) B2 = B for every bi-ideal B of S. (That is, every bi-ideal of S is idempotent).

Theorem 8.4. For a semigroup S, the following conditions are equivalent:

1) S is both regular and intra-regular.

2) fS ◦ fS = fS for every SI-bi-ideal fS of S. (That is, every SI-bi-ideal of S is idempotent).

3) fS∩̃1S⊆̃( fS ◦ 1S)∩̃(1S ◦ fS) for every SI-bi-ideals fS and 1S of S.

4) fS∩̃1S⊆̃( fS ◦ 1S)∩̃(1S ◦ fS) for every SI bi-ideal fS and for every SI-left ideal 1S of S.
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5) fS∩̃1S⊆̃( fS ◦ 1S)∩̃(1S ◦ fS) for every SI bi-ideal fS and for every SI-right ideal 1S of S.

6) fS∩̃1S⊆̃( fS ◦ 1S)∩̃(1S ◦ fS) for every SI-right ideal fS and for every SI-left ideal 1S of S.

Proof. First assume that (1) holds. In order to show that (3) holds, let fS and 1S be SI-bi-ideals of S and a ∈ S.
Since S is intra-regular, there exist elements y and z in S such that a = ya2z for every element a of S. Thus,

a = axa = (axa)xa = ax(ya2z)xa = (axya)(azxa)

Since fS and 1S be SI-bi-ideals of S, we have;

fS(a(xy)a) ⊇ fS(a) ∩ fS(a) = fS(a)

1S(a(zx)a) ⊇ 1S(a) ∩ 1S(a) = 1S(a)

Then, we have:

( fS ◦ 1S)(a) =
⋃
a=bc

( fS(b) ∩ 1S(c))

⊇ ( fS(axya) ∩ 1S(azxa))
⊇ fS(a) ∩ 1S(a)

= ( fS∩̃1S)(a)

and so we have fS ◦ 1S⊇̃ fS∩̃1S. One can similarly show that 1S ◦ fS⊇̃1S∩̃ fS, which means that fS∩̃1S⊆̃( fS ◦
1S)∩̃(1S ◦ fS). This shows that (1) implies (3).

It is obvious that (3) implies (4), (4) implies (6) , (3) implies (5) and (5) implies (6).
Assume that (6) holds. Let fS and 1S be any SI-right ideal and SI-left ideal of S, respectively. Then, we

have
fS∩̃1S = 1S∩̃ fS⊆̃( fS ◦ 1S)∩̃(1S ◦ fS)⊆̃1S ◦ fS

It follows by Theorem 8.2 that S is intra-regular. On the other hand,

fS∩̃1S⊆̃( fS ◦ 1S)∩̃(1S ◦ fS)⊆̃ fS ◦ 1S

Since, the inclusion fS ◦ 1S⊆̃ fS∩̃1S always hold, we have fS∩̃1S = fS ◦ 1S. It follows that S is regular. Hence,
(6) implies (1).

It is clear that (3) implies (2). In fact, by taking 1S as fS in (3), we get

fS∩̃ fS = fS = ( fS ◦ fS)∩̃( fS ◦ fS) = fS ◦ fS

Finally assume that (2) holds. In order to show that (1) holds, it is enough to show that B2 = B for every
bi-ideal B of S. Let B be any bi-ideal of S. Then, BB ⊆ B always holds. We show that B ⊆ BB. Let b ∈ B.
Since B is a bi-ideal of S, the soft characteristic function SB is an SI-bi-ideal of S. So we have;

(SBB)(b) = (SB ◦ SB)(b) = SB(b) = U

which means that b ∈ BB. Thus, B ⊆ BB and so B = BB = B2 . It follows that S is both regular and
intra-regular, so (2) implies (1).

Theorem 8.5. For a semigroup S, the following conditions are equivalent:

1) S is both regular and intra-regular.

2) fS∩̃1S∩̃hS⊆̃ fS ◦ 1S ◦ hS for every SI-bi-ideals fS, 1S and hS of S.
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3) fS∩̃1S∩̃hS⊆̃ fS ◦ 1S ◦ hS for every SI bi-ideals fS and hS of S and for every SI-right ideal 1S of S.

4) fS∩̃1S∩̃hS⊆̃ fS ◦ 1S ◦ hS for every SI-left ideals fS and hS of S and for every SI-right ideal 1S of S.

Proof. First assume that (1) holds. In order to show that (4) holds, let fS and hS be any SI-left ideals of S and
1S be any SI-right ideal of S and a be any element in S. Since S is regular, there exists element x in S such
that a = axa. Since S is intra-regular, there exist elements y, z in S such that a = ya2z. Thus, we have

a = axa = (axa)x(axa) = (ax(yaaz))x((yaaz)xa) = (axya)(azxya)(azxa)

Therefore, we have

( fS ◦ 1S ◦ hS)(a) = [ fS ◦ (1S ◦ hS)](a)

=
⋃
a=pq

[ fS(p) ∩ (1S ◦ hS)(q)]

⊇ fS(axya) ∩ (1S ◦ hS)(azxyaazxa)

= fS(a) ∩ {
⋃

azxyaazxa=uv

(1S(u) ∩ hS(v))}

⊇ fS(a) ∩ (1S(azxya) ∩ hS(azxa))
⊇ fS(a) ∩ 1S(a) ∩ hS(a)

= ( fS∩̃1S∩̃hS)(a)

so we have fS∩̃1S∩̃hS⊆̃ fS ◦ 1S ◦ hS. Thus, (1) implies (4). Assume that (4) holds. Let fS and 1S be SI-left and
SI-right ideal of S, respectively. Since S̃, itself is an SI-left ideal of S,

1S∩̃ fS = 1S∩̃S̃∩̃ fS⊆̃1S ◦ S̃ ◦ fS⊆̃1S ◦ fS

Since the inclusion 1S ◦ fS⊆̃1S∩̃ fS always hold, 1S∩̃ fS = 1S ◦ fS. Hence, it follows that S is regular. Now, let
fS and 1S be any SI-left ideal and SI-right ideal of S, respectively. Since S̃ itself is an SI-left ideal of S, by
assumption we have:

fS∩̃1S = fS∩̃1S∩̃S̃⊆̃ fS ◦ 1S ◦ S̃ = fS ◦ (1S ◦ S̃)⊆̃ fS ◦ 1S

Thus, it follows by Theorem 8.2 that S is intra-regular. So, (4) implies (1). It is obvious that (2) implies (3)
and (3) implies (4). Thus, the proof is completed.

Now we give a new characterization for an intra-regular semigroup: First, we have the following definition:

Definition 8.6. A soft set fS over U is called soft semiprime if for all a ∈ S,

fS(a) ⊇ fS(a2).

Theorem 8.7. For a nonempty subset A of S, the following conditions are equivalent:

1) A is semiprime.

2) The soft characteristic function SA of A is soft semiprime.

Proof. First assume that (1) holds. Let a be any element of S. We need to show that SA(a) ⊇ SA(a2) for all
a ∈ S. If a2

∈ A, then since A is semiprime, a ∈ A. Thus,

SA(a) = U = SA(a2)

If a2 < A, then
SA(a) ⊇ ∅ = SA(a2)
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In any case, SA(a) ⊇ SA(a2) for all a ∈ S. Thus, SA is soft semiprime. Hence (1) implies (2).
Conversely assume that (2) holds. Let a2

∈ A. Since SA is soft semiprime, we have

SA(a) ⊇ SA(a2) = U

implying that SA(a) = U and that a ∈ A. Hence, A is semiprime. Thus, (2) implies (1).

Theorem 8.8. For any SI-semigroup fS, the following conditions are equivalent:

1) fS is soft semiprime.

2) fS(a) = fS(a2) for all a ∈ S.

Proof. (2) implies (1) is clear. Assume that (1) holds. Let a be any element of S. Since fS is an SI-semigroup,
we have;

fS(a) ⊇ fS(a2) = fS(aa) ⊇ fS(a) ∩ fS(a) = fS(a)

So, fS(a2) = fS(a) and (1) implies (2). This completes the proof.

Theorem 8.9. For a semigroup S, the following conditions are equivalent:

1) S is intra-regular.

2) Every SI-ideal of S is soft semiprime.

3) fS(a) = fS(a2) for all SI-ideal of S and for all a ∈ S.

Proof. First assume that (1) holds. Let fS be any SI-ideal of S and a any element of S. Since S is intra-regular,
there exist elements x and y in S such that a = xa2y. Thus,

fS(a) = fS(xa2y) ⊇ fS(xa2) ⊇ fS(a2) = fS(aa) ⊇ fS(a)

so, we have fS(a) = fS(a2). Hence, (1) implies (3).
Conversely, assume that (3) holds. It is known that J[a2] is an ideal of S. Thus, the soft characteristic

function SJ[a2] is an SI-ideal of S. Since a2
∈ J[a2], we have;

SJ[a2](a) = SJ[a2](a2) = U

Thus, a ∈ J[a2] = {a2
} ∪ Sa2

∪ a2S ∪ Sa2S ⊆ Sa2S. Here, one can easily show that S is intra-regular. Hence (3)
implies (1).

It is obvious that (3) implies (2). Now, assume that (2) holds. Let fS be an SI-ideal of S. Since fS is a soft
semiprime ideal of S,

fS(a) ⊇ fS(a2) = fS(aa) ⊇ fS(a)

Thus, fS(a) = fS(a2). Hence (2) implies (3). This completes the proof.

Theorem 8.10. Let S be an intra-regular semigroup. Then, for every SI-ideal fS of S,

fS(ab) = fS(ba)

for all a, b ∈ S.

Proof. Let fS be an SI-ideal of an intra-regular semigroup S. Then, by Theorem 8.9, we have;

fS(ab) = fS((ab)2) = fS(a(ba)b) ⊇ fS(ba) = fS((ba)2) = fS(b(ab)a) ⊇ fS(ab)

so, we have fS(ab) = fS(ba). This completes the proof.
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9. Completely Regular Semigroups

In this section, we characterize a completely regular semigroups in terms of SI-ideals. An element a of
S is called a completely regular if there exists an element x ∈ S such that

a = axa and ax = xa

A semigroup S is called completely regular if every element of S is completely regular. A semigroup is called
left (right) regular if for each element a of S, there exists an element x ∈ S such that

a = xa2 (a = a2x).

Proposition 9.1. [29] For a semigroup S, the following conditions are equivalent:

1) S is completely regular.

2) S is left and right regular, that is, a ∈ Sa2 and a ∈ a2S for all a ∈ S.

3) a ∈ a2Sa2 for all a ∈ S.

Theorem 9.2. For a left regular semigroup S, the following conditions are equivalent:

1) Every left ideal of S is a two-sided ideal of S.

2) Every SI-left ideal of S is an SI-ideal of S.

Proof. Assume that (1) holds. Let fS be any SI-left ideal of S and a and b be any elements of S. Then, since
the left ideal Sa is a two-sided ideal by assumption and since S is left regular, we have

ab ∈ (Sa2)b ⊆ (Sa)bS ⊆ Sa

This implies that there exists an element x ∈ S such that ab = xa. Thus, since f S is an SI-left ideal of S, we
have

fS(ab) = fS(xa) ⊇ fS(a).

Hence, fS is an SI-right ideal of S and so fS is an SI-ideal of S. Thus (1) implies (2).
Assume that (2) holds. Let A be any left ideal of S. Then, the soft characteristic function SA is an SI-left

ideal of S. Then, by assumption, SA is an SI-right ideal of S and so A is a right ideal of S and so A is a
two-sided ideal of S. Hence (2) implies (1).

Theorem 9.3. For a semigroup S, the following conditions are equivalent:

1) S is left regular.

2) For every SI-left ideal fS of S, fS(a) = fS(a2) for all a ∈ S.

Proof. First assume that (1) holds. Let fS be any SI-left ideal of S and a be any element of S. Since S is left
regular, there exists an element x in S such that a = xa2. Thus, we have

fS(a) = fS(xa2) ⊇ fS(a2) ⊇ fS(a)

implying that fS(a) = fS(a2). Hence (1) implies (2).
Conversely, assume that (2) holds. Let a be any element of S. Since L[a2] is a left ideal of S, the soft

characteristic function SL[a2] is an SI-left ideal of S. Since a2
∈ L[a2], we have

SL[a2](a) = SL[a2](a2) = U

implying that a ∈ L[a2] = {a2
} ∪ Sa2. This obviously means that S is left regular. So (2) implies (1). This

completes the proof.
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Theorem 9.4. For a semigroup S, the following conditions are equivalent:

1) S is right regular.

2) For every SI-right ideal fS of S, fS(a) = fS(a2) for all a ∈ S.

Theorem 9.5. For a semigroup S, the following conditions are equivalent:

1) S is completely regular.

2) Every bi-ideal of S is semiprime.

3) Every SI-bi-ideal of S is soft semiprime.

4) fS(a) = fS(a2) for every SI-bi-ideal fS of S and for all a ∈ S.

Proof. First assume that (1) holds. Let fS be any SI-bi-ideal of S. Since S is completely regular, there exists
an element x ∈ S such that a = a2xa2. Thus, we have

fS(a) = fS(a2xa2) ⊇ fS(a2) ∩ fS(a2) = fS(a2) = fS(aa) = fS(a(a2xa2) =

fS(a(a2xa)a) ⊇ fS(a) ∩ fS(a) = fS(a)

and so, fS(a) = fS(a2). Thus (1) implies (4). (4) implies (3) is clear by Theorem 8.9. Assume that (3) holds.
Let B be any bi-ideal of S and a2

∈ B. Since the soft characteristic function SB of B is an SI-bi-ideal of S, it is
soft semiprime by hypothesis. Thus,

SB(a) ⊇ SB(a2) = U

Hence, a ∈ B and so B is semiprime. Thus (3) implies (2).
Finally assume that (2) holds. Let a be any element of S. Then, since the principal ideal B[a2] generated

by a2 is a bi-ideal and so by assumption semiprime and since a2
∈ B[a2],

SB[a2](a) = SB[a2](a2) = U

implying that
a ∈ B[a2] = {a2

} ∪ {a4
} ∪ a2Sa2

⊆ a2Sa2.

This implies that S is completely regular. Thus (2) implies (1). This completes the proof.

10. Weakly Regular Semigroups

In this section, we characterize a weakly regular semigroup in terms of SI-ideals. A semigroup S is
called weakly-regular if for every x ∈ S, x ∈ (xS)2.

Proposition 10.1. [29] A monoid is weakly regular if and only if I∩ J = IJ for all right ideal I and all two-sided ideal
J of S.

Theorem 10.2. For a monoid S, the following conditions are equivalent:

1) S is weakly regular.

2) fS∩̃1S⊆̃ fS ◦ 1S for every SI-right ideal fS of S and for every SI-ideal 1S of S.
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Proof. First assume that (1) holds. Let fS be an SI-right ideal of S, 1S be an SI-left ideal of S and x ∈ S. Then,
since S is weakly regular, x ∈ (xS)2. Thus, x = xsxt for some s, t ∈ S. Hence,

( fS ◦ 1S)(x) =
⋃

x=xsxt

( fS(xs) ∩ 1S(xt))

⊇ fS(x) ∩ 1S(x)

= ( fS∩̃1S)(x)

Since fS∩̃1S⊇̃ fS ◦ 1S always holds for every SI-right ideal fS and SI-left ideal 1S of S, fS∩̃1S = fS ◦ 1S. Thus,
(1) implies (2).

Conversely assume that (2) holds. In order to show that S is weakly regular, we show that R ∩ L = RL
for every right ideal R and left ideal L of S. It is obvious that RL ⊆ R ∩ L always holds. In order to see that
R∩ L ⊆ RL, let a be any element in R∩ L. Then a ∈ R and a ∈ L. Thus, the soft characteristic functions SR of
R and SL of L is SI-right and SI-left ideal of S, respectively. Thus, we have:

SRL(a) = (SR ◦ SL)(a) = (SR∩̃SL)(a) = (SR∩L)(a) = U

so, a ∈ RL. Thus, R ∩ L ⊆ RL and R ∩ L = RL. It follows that S is weakly-regular. Hence (2) implies (1).

Theorem 10.3. For a monoid S, the following conditions are equivalent:

1) S is weakly regular.

2) fS∩̃1S∩̃hS⊆̃ fS ◦ 1S ◦ hS for every SI-bi-ideal fS of S, for every SI-ideal 1S of S and for every SI-right ideal hS of S.

Proof. First assume that (1) holds. Let x ∈ S. Then, x ∈ (xS)2. Thus, x = xsxt for some s, t ∈ S. Hence,

( fS ◦ 1S ◦ hS)(x) = [ fS ◦ (1S ◦ hS)](x)

=
⋃

x=xsxt

[ fS(x) ∩ (1S ◦ hS)(sxt)]

⊇ fS(x) ∩ {
⋃

sxt=pv

(1S(p) ∩ hS(v))}

⊇ fS(x) ∩ 1S(sxs) ∩ hS(xt2)
⊇ fS(x) ∩ 1S(x) ∩ hS(x)

= ( fS∩̃1S∩̃hS)(x)

since sxt = s(xsxt)t = (sxs)(xt2). Thus, (1) implies (2).
Now, assume that (2) holds. Let fS be an SI-right ideal of S, 1S be an SI-ideal of S and let hS = S̃. Then,

we have
fS∩̃1S∩̃hS = fS∩̃1S∩̃S̃ = fS∩̃1S

and
fS ◦ 1S ◦ hS = fS ◦ 1S ◦ S̃ = fS ◦ (1S ◦ S̃)⊆̃ fS ◦ 1S

Then, fS∩̃1S = fS∩̃1S∩̃hS⊆̃ fS ◦1S ◦hS⊆̃ fS ◦1S that is, fS∩̃1S⊆̃ fS ◦1S for every SI-right ideal fS of S and SI-ideal
1S of S. Thus, S is weakly regular. Hence (2) implies (1). This completes the proof.

Theorem 10.4. For a monoid S, the following conditions are equivalent:

1) S is weakly regular.

2) fS∩̃1S⊆̃ fS ◦ 1S for every SI-bi-ideal fS of S and for every SI-ideal 1S of S.

Proof. Similar to the the proof of Theorem 10.3.
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11. Quasi-Regular Semigroups

In this section, we study a semigroup whose SI-left (right, two-sided) ideals are all idempotent. A
semigroup S is called left (right) quasi-regular if every left (right) ideal of S is idempotent, and is called
quasi-regular if every left ideal and right ideal of S is idempotent ([9]). It is easy to prove that S is left (right)
quasi-regular if and only if a ∈ SaSa (a ∈ aSaS), this implies that there exist elements x, y ∈ S such that
a = xaya (a = axay).

Theorem 11.1. A semigroup S is left (right) quasi-regular if and only if every SI-left (right) ideal is idempotent.

Proof. Assume that fS is an SI-left ideal. Then, there exist x, y ∈ S such that a = xaya. So, we have;

( fS ◦ fS)(a) =
⋃

a=xaya

( fS(xa) ∩ fS(ya))

⊇ fS(xa) ∩ fS(ya)
⊇ fS(a) ∩ fS(a)
= fS(a)

and so, fS ◦ fS⊇̃ fS. Thus, fS ◦ fS = fS and fS is idempotent.
Conversely, assume that every SI-left ideal of S is idempotent. Let a ∈ S. Then, since L[a] is a principal

left ideal of S, the soft characteristic function SL[a] is an SI-left ideal of S. Thus, by assumption

SL[a]L[a](a) = (SL[a] ◦ SL[a])(a) = SL[a](a) = U

and so,
a ∈ L[a]L[a] = ({a} ∪ Sa)({a} ∪ Sa) = {a2

} ∪ aSa ∪ Sa2
∪ SaSa ⊆ SaSa

Hence, S is left quasi-regular. The case when S is right quasi-regular can be similarly proved.

Theorem 11.2. Let S be a semigroup. If fS = ( fS ◦ S̃)2
∩̃(̃S ◦ fS)2 for every SI-ideal fS of S, then S is quasi-regular.

Proof. Let fS be any SI-right ideal of S. Thus, we have

fS = ( fS ◦ S̃)2
∩̃(̃S ◦ fS)2

⊆̃( fS ◦ S̃)2
⊆̃ fS ◦ fS⊆̃ fS ◦ S̃⊆̃ fS

and so fS = ( fS)2. It follows that S is right quasi-regular by Theorem 11.1. One can similarly show that S is
left quasi-regular.

Theorem 11.3. For a semigroup S, the following conditions are equivalent:

1) S is both intra-regular and left quasi-regular.

2) 1S∩̃hS∩̃ fS = 1S ◦ hS ◦ fS for every SI-bi-ideal fS, for every SI-left ideal 1S and every SI-right ideal hS of S.

Proof. Assume that (1) holds. Let fS be any SI-bi-ideal, 1S be any SI-left ideal and hS be any SI-right ideal of
S. Let a be any element of S. Since S is intra-regular, there exist elements x, y ∈ S such that a = xa2y. Since S
is left quasi-regular, there exist elements u, v ∈ S such that a = uava. Hence

a = uava = u(xaay)va = ((ux)a)((a(yv)a)
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Thus,

(1S ◦ hS ◦ fS)(a) = [1S ◦ (hS ◦ fS)](a)

=
⋃

a=((ux)a)((a(yv)a)

[1S((ux)a)) ∩ (hS ◦ fS)(a(yv)a))]

⊇ 1S((ux)a)) ∩ (hS ◦ fS)(a(yv)a))

⊇ 1S(a) ∩ (
⋃

(a(yv))a=mn)

hS(m) ∩ fS(n))

⊇ 1S(a) ∩ (hS(a(yv)) ∩ fS(a))
⊇ 1S(a) ∩ hS(a) ∩ fS(a)

= (1S∩̃hS∩̃ fS)(a)

and so 1S ◦ hS ◦ fS ⊇ 1S∩̃hS∩̃ fS. Thus, (1) implies (2). Assume that (2) holds. Let 1S be any SI-left ideal and
fS be any SI-right ideal of S. Then, since SI-left ideal 1S is a bi-ideal of S, and since S̃ itself is an SI-right
ideal of S, we have

1S = 1S∩̃S̃∩̃1S = 1S ◦ S̃ ◦ 1S = 1S ◦ (̃S ◦ 1S)⊆̃1S ◦ 1S⊆̃S̃ ◦ 1S⊆̃1S

Hence 1S = 1S ◦ 1S. Thus, by Theorem 11.1, S is left quasi-regular.
Now, since SI-right ideal fS is an SI-bi-ideal of S, and since S̃ itself is an SI-right ideal of S, we have:

1S∩̃ fS = 1S∩̃S̃∩̃ fS = 1S ◦ S̃ ◦ fS = 1S ◦ (̃S ◦ fS)⊆̃1S ◦ fS

Thus, by Theorem 8.2, S is intra-regular. Hence (2) implies (1). This completes the proof.

12. Conclusion

Throughout this paper, soft intersection semigroup, soft intersection left (right, two-sided) ideals, soft
intersection bi-ideals and soft semiprime ideals are studied and regular, intra-regular, completely regular,
weakly regular and quasi-regular semigroups are characterized by the properties of these ideals. Based on
these results, some further work can be done on the properties of other soft intersection ideals of semigroups,
which may be useful to characterize the classical semigroups.
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